EXPLO	SCIENCE TEA OF WEST	ACHERS' ASSOCIATION ERN'AUSTRALIA YSICS STAGE 3
Electric	ity and M	agnetism: From lodestone to superconducting magnets – Comprehension
Comp3	1	It is called north seeking because it is the pole that always points to north.
1	2	The Earth's magnetic field exerts a force on the magnet causing it to align with the field
	3	The field lines around a wire are in the form of concentric circles, which do not appear to originate from a particular point. The field around a wire are a result of the magnetic field caused by moving charges, there is no beginning point for these charges so there is no pole.
	4	Field from a permanent magnet ~0.01 T, Earth's field ~5 × 10^{-5} T. $0.01/5 \times 10^{-5} = 200$
	5	$30 \text{ T} / 5 \times 10^{-5} = 600,000 - \text{so strongest electromagnet produces a field 600,000 times stronger than the Earth's.}$
	6a	For all of Q6, assume a length of 10 cm is in the field. Use $F = IIB$ $F = 1A \times 0.1 \text{ m} \times 5 \times 10^{-5} \text{ T} = 5 \times 10^{-6} \text{ N}$
	6b	$F = 1 A \times 0.1 m \times 0.01 T = 0.001 N$
	6c	$F = 1 A \times 0.1 m \times 30 T = 3 N$
	6d	$F = 1 A \times 0.1 m \times 10^{11} T = 1 \times 10^{10} N$
	7a	For all of Q7 use $\phi = B A$, where $A = 0.1 \text{ m} \times 0.1 \text{ m} = 0.01 \text{ m}^2$ $\phi = 5 \times 10^{-5} \text{ T} \times 0.01 \text{ m}^2 = 5 \times 10^{-7} \text{ Wb}$
	7b	$\phi = 0.01 \text{ T} \times 0.01 \text{ m}^2 = 1 \times 10^{-4} \text{ Wb}$
	7c	$\phi = 30 \text{ T} \times 0.01 \text{ m}^2 = 0.3 \text{ Wb}$
	7d	$\phi = 1 \times 10^{11} \text{ T} \times 0.01 \text{ m}^2 = 1 \times 10^9 \text{ Wb}$
	8a	For all of Q8 use Average emf = $-N \frac{(B.A-0)}{t}$ where in these examples, A = 0.01 m ² and t = 0.005 s. Average emf = $-100 \frac{(5 \times 10^{-7} Wb - 0)}{0.005 s} = -0.01 V$
	8b	Average emf = $-100 \frac{(1 \times 10^{-4}Wb - 0)}{0.005 \ s} = -2 V$
	8c	Average $emf = -100 \frac{(0.3 Wb - 0)}{0.005 s} = -6000 V$
	8d	Average emf = $-100 \frac{(1 \times 10^9 Wb - 0)}{0.005 s} = -2 \times 10^{13} V$
	9	They have been calculated using the time for $\frac{1}{4}$ of a revolution – the time required for the flux cut by the coil to change from a maximum value to zero.
	10	All graphs have similar shapes - a sine curve with an average value given by the answers to Question 8 a) - d). For example, for a coil rotated in the Earth's field: 0.016 V 0.005 s
		In each case, maximum voltage E= NBAW Where: N = 100 B - changes with field $A = 0.01 \text{ m}^2$ $W = 314 \text{ rad s}^{-1}$